Characteristics of vitamin C immobilized particles and sodium alginate beads containing immobilized particles.
نویسندگان
چکیده
This paper reports the properties of vitamin C encapsulated sodium alginate beads prepared by an alternative approach. The alternative encapsulation process mainly involves immobilization of vitamin C in hydrated zinc oxide layers and encapsulation of prepared immobilized particles in sodium alginate bead. The immobilization of vitamin C in hydrated zinc oxide layers was achieved by a coprecipitation process. Fourier transform infrared (FTIR) spectroscopy showed that the vitamin C was found to be stable after its immobilization. X-ray diffraction (XRD) studies revealed that anionic vitamin C molecules are adsorbed between positively charged zinc hydroxide layers with a 1:1 layer sequence, since well-defined change in basal spacing was observed. Well-defined change in surface morphology was observed by scanning electron microscopy (SEM) when vitamin C immobilized particles are encapsulated in sodium alginate bead. The biological activity of vitamin C was retained, even after its immobilization which was confirmed by 4-dihydroxy-L-phenylalanine (L-DOPA) oxidase inhibition and free radical scavenging activity studies. The release rate of vitamin C from immobilized particles and beads was sustained through an ion exchange process. A higher amount of stable vitamin C was recovered from the bead when compared to neat vitamin C itself.
منابع مشابه
SHOOT REGENERATION FROM SAFFRON PROTOPLASTS IMMOBILIZED IN Ca-ALGINATE BEADS
Saffron (Crocus sativus L.) protoplasts were isolated from the cells of a suspension culture or calli with a solution of Cellulase, Pectinase and Hemicellulase and embedded in Ca-alginate beads. They were cultured with or without nurse cells in MS medium supplemented with 2,4-D and 6-benzylaminopurine at 25°C. After several changes of medium, cell-clusters appeared on the surface of the Ca-algi...
متن کاملAddition of Fillers to Sodium Alginate Solution Improves Stability and Immobilization Capacity of the Resulting Calcium Alginate Beads
Background: Although advantages of immobilization of cells through entrapment in calcium alginate gel beads have already been demonstrated, nevertheless, instability of the beads and the mass transfer limitations remain as the major challenges.Objective: The objective of the present study was to increase the stability, porosity (reduce mass transfer limit...
متن کاملComparison of nano-hydroxyapatite productivity by Pseudomonas aeruginosa and Serratia marcescense through encapsulation method
Objective(s): The production of nano-hydroxyapatite by two encapsulated bacterial strains was the goal of current research. Materials and Methods: Serratia marcscens ATCC 14756 and Pseudomonas aeruginosa PTCC 1570 were used by two methods including encapsulated form in 2% (w/v) alginate sodium powder and inoculated form (10%) in nutrient broth medium containing alginate sodium blank beads....
متن کاملOptimization of the Cellulase Free Xylanase Production by Immobilized Bacillus Pumilus
Background: The extracellular xylanase secreted by microorganisms is a hydrolytic enzyme, which arbitrarily cleaves the β-1, 4 backbone of the polysaccharide xylan; an enzyme used in the food processing, bio-pulping and bio-bleaching. The commercial production of the xylanase is limited because of a higher cost involvement, which can be overcome by the cost-effective production...
متن کاملBioaffinity Based Immobilization of Almond (Amygdalus communis) b-galactosidase on Con A-layered Calcium Alginate-cellulose Beads: Its Application in Lactose Hydrolysis in Batch and Continuous Mode
In this study, immobilization of partially purified almond (Amygdalus communis) β-galactosidase on Con A layered calcium alginate-cellulose beads was investigated. Immobilized β-galactosidase retained 72% of theinitial activity after crosslinking by glutaraldehyde. Both soluble and immobilized enzyme exhibited the samepH and temperature optima at pH 5.5 and 50ºC, respectively. Howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of microencapsulation
دوره 22 4 شماره
صفحات -
تاریخ انتشار 2005